Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[[*µ*₃-4-(4,5-diazafluoren-9-vlideneamino)benzoato- $\kappa^3 O.O':N1$ (methanol- κO)(thiocyanato- κN)cadmium(II)]

Ju-Mei Zheng, Chen-Xia Du* and Yang-Jie Wu

Chemistry Department, Zhengzhou University, 450052 Zhengzhou, People's Republic of China Correspondence e-mail: dcx@zzu.edu.cn

Received 2 April 2007; accepted 19 April 2007

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.004 Å; R factor = 0.029; wR factor = 0.073; data-to-parameter ratio = 18.1.

the crystal structure of the title compound, In $[Cd(C_{18}H_{10}NO_2)(NCS)(CH_3OH)]_n$, the Cd^{II} atom is O,O'chelated by the monoanionic carboxylate group and N,N'chelated by the diazafluorene portion of a symmetry-related ligand. The geometry is seven-coordinate pentagonal bipyramidal. The crystal structure exhibits intermolecular O- $H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Wang et al. (1998); Xiao et al. (2000); Xu et al. (2003).

Experimental

Crystal data

[Cd(C18H10NO2)(NCS)(CH4O)] $M_r = 502.81$ Monoclinic, $P2_1/c$ a = 8.3118 (7) Å b = 8.8422 (7) Å c = 26.829 (2) Å $\beta = 98.193 \ (1)^{\circ}$

Data collection

- Bruker SMART CCD area detector diffractometer Absorption correction: multi-scan
- (SADABS; Sheldrick, 2004) $T_{\rm min}=0.718,\ T_{\rm max}=0.871$

V = 1951.7 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.26 \text{ mm}^{-1}$ T = 291 (2) K $0.28 \times 0.18 \times 0.11 \text{ mm}$

17426 measured reflections 4767 independent reflections 4054 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.073$ S = 1.004767 reflections

263 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.80~{\rm e}~{\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cd1-N4	2.219 (3)	Cd1-O2 ⁱⁱ	2.4466 (19)
Cd1-O3	2.314 (2)	Cd1-O2	2.5027 (17)
Cd1-N1 ⁱ	2.394 (2)	Cd1-N2 ⁱ	2.6161 (19)
Cd1-O1	2.4351 (19)		
N4-Cd1-O3	106.34 (9)	O3-Cd1-O2	98.71 (6)
N4-Cd1-N1 ⁱ	147.31 (8)	N1 ⁱ -Cd1-O2	78.99 (6)
O3-Cd1-N1 ⁱ	84.96 (7)	O1-Cd1-O2	52.57 (6)
N4-Cd1-O1	87.08 (8)	$O2^{ii}$ -Cd1-O2	72.34 (7)
O3-Cd1-O1	79.96 (7)	$N4-Cd1-N2^{i}$	80.35 (8)
N1 ⁱ -Cd1-O1	125.45 (7)	O3-Cd1-N2 ⁱ	77.79 (7)
N4–Cd1–O2 ⁱⁱ	87.65 (9)	N1 ⁱ -Cd1-N2 ⁱ	72.08 (6)
O3-Cd1-O2 ⁱⁱ	165.99 (7)	O1-Cd1-N2 ⁱ	150.11 (7)
N1 ⁱ -Cd1-O2 ⁱⁱ	82.77 (7)	O2 ⁱⁱ -Cd1-N2 ⁱ	104.65 (6)
O1-Cd1-O2 ⁱⁱ	101.78 (6)	O2-Cd1-N2 ⁱ	151.04 (7)
N4-Cd1-O2	127.41 (7)		

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
03-H30···01 ⁱⁱⁱ	0.82	1.85	2.658 (3)	169
Symmetry code: (iii)	r + 2 - n + 1	_ 7 ⊥ 1		

Symmetry code: (iii) -x + 2, -y + 1, -z + 1.

Data collection: SMART (Bruker 2001); cell refinement: SAINT (Bruker 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support by the Natural Science Foundation of China (No. 20471054).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2247).

References

Bruker (2001). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Wang, Y. X., Perez, W., Zheng, G. Y., Rillema, D. P. & Huber, C. L. (1998). Inorg. Chem. 37, 2227.
- Xiao, W., Lu, Z. L., Su, C. Y., Yu, K. B., Deng, L. R., Liu, H. Q. & Kang, B. S. (2000). J. Mol. Struct. 553, 91-99.
- Xu, C., Mao, H. Y., Zhang, H. Y., Wu, Q. A., Liu, H. L., Hou, H. W., Zhu, Y. & Li, G. (2003). J. Mol. Struct. 658, 59-64.

supplementary materials

Acta Cryst. (2007). E63, m2175 [doi:10.1107/S1600536807019460]

Poly[[μ_3 -4-(4,5-diazafluoren-9-ylideneamino)benzoato- $\kappa^3 O,O':N$](methanol- κO)(thiocyanato- κN)cadmium(II)]

J.-M. Zheng, C.-X. Du and Y.-J. Wu

Comment

4,5-Diazafluorene-9-one and its derivatives are excellent chelating agents (Wang *et al.*, 1998; Xiao *et al.*, 2000; Xu *et al.*, 2003). 4-(4,5-Diazafluoren-9-ylidieneamino)benzoic acid possesses a carboxylic acid substituent, and is then capable of binding through both the diazafluorene as well as the carboxyl parts of the deprotonated carboxylic acid.

In the crystal structure of the title complex (I), the Cd^{II} atom shows pentagonal bipyramid coordination. The carboxylate group functions in μ_3 bridging mode; it chelates to two metal atoms through the carboxyl and diazafluorene parts and additionally, it uses the oxygen atom of the carboxyl portion to interact with a third metal atom (Fig. 1). Such a bridging mode gives rise to a layer. The coordinated methanol molecular engages in a hydrogen bonding interaction to lead to a three-dimensional hydrogen-bonded structure.

Experimental

The dafb compound was synthesized by the condensation of 4,5-diazafluorene-9-one with 4-amino-benzoic acid in 1:1 molar ratio in anhydrous ethanol. The title complex was prepared by the reaction of $Cd(NO_3)_2$ ·4H₂O (0.308 g, 1.0 mmol), NaSCN (0.081 g, 1.0 mmol) and acid (0.301 g, 1.0 mmol) in 50 ml me thanol; the solution was heated for 2 h. Light yellow crystals were obtained by slow evaporation of the solvent.

Refinement

H atom bonded to O atom was located in a difference map and refined with O—H = 0.82 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$.

Figures

Fig. 1. The structure of the title complex showing the atom-numbering scheme.

$Poly[[\mu_3-4-(4,5-diazafluoren-9-ylideneamino)benzoato-\kappa^3O,O':N] (methanol-\kappa O) (thiocyanoato-konstructure) (the second second$ κ*N*)cadmium(II)]

 $F_{000} = 1000$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.4 - 28.0^{\circ}$

 $\mu = 1.26 \text{ mm}^{-1}$ T = 291 (2) K

Block, yellow

 $0.28 \times 0.18 \times 0.11 \text{ mm}$

 $D_{\rm x} = 1.711 {\rm Mg m}^{-3}$ Mo Kα radiation

Cell parameters from 6196 reflections

Crystal data

[Cd(C18H10N1O2)(NCS)(CH4O)] $M_r = 502.81$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc *a* = 8.3118 (7) Å b = 8.8422 (7) Å c = 26.829 (2) Å $\beta = 98.1930 \ (10)^{\circ}$ V = 1951.7 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area detector diffractometer	4767 independent reflections
Radiation source: fine-focus sealed tube	4054 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
T = 291(2) K	$\theta_{\rm max} = 28.2^{\circ}$
φ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -11 \rightarrow 11$
$T_{\min} = 0.718, T_{\max} = 0.871$	$k = -11 \rightarrow 11$
17426 measured reflections	$l = -35 \rightarrow 35$

Refinement

Refinement on F^2	Secondary atom site location: d
Least-squares matrix: full	Hydrogen site location: inferred sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters not refined
$wR(F^2) = 0.073$	$w = 1/[\sigma^2(F_o^2) + (0.0347P)^2 +$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.002$
4767 reflections	$\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$
263 parameters	$\Delta \rho_{min} = -0.80 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

lifference Fourier map d from neighbouring 1.156P]

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.70919 (2)	0.48390 (2)	0.546677 (6)	0.03675 (7)
S1	0.95499 (18)	0.93208 (14)	0.63347 (4)	0.1048 (4)
01	0.7890 (2)	0.5393 (3)	0.46472 (7)	0.0523 (5)
O2	0.5646 (2)	0.4085 (2)	0.46208 (6)	0.0444 (4)
03	0.9340 (2)	0.3282 (2)	0.54939 (7)	0.0519 (5)
НЗО	1.0209	0.3718	0.5490	0.078*
N1	0.5713 (2)	0.2399 (2)	0.06768 (6)	0.0354 (4)
N2	0.7869 (3)	0.0638 (3)	0.14334 (7)	0.0401 (5)
N3	0.5485 (3)	0.4793 (3)	0.22597 (8)	0.0481 (6)
N4	0.8030 (3)	0.7114 (3)	0.57061 (9)	0.0597 (7)
C1	0.4633 (3)	0.3307 (3)	0.04010 (9)	0.0427 (6)
H1	0.4402	0.3137	0.0056	0.051*
C2	0.3851 (4)	0.4483 (3)	0.06077 (10)	0.0495 (7)
H2	0.3110	0.5076	0.0401	0.059*
C3	0.4157 (4)	0.4792 (3)	0.11212 (10)	0.0462 (6)
H3	0.3618	0.5562	0.1266	0.055*
C4	0.5301 (3)	0.3895 (3)	0.14043 (8)	0.0372 (5)
C5	0.6003 (3)	0.2731 (3)	0.11655 (8)	0.0332 (5)
C6	0.7071 (3)	0.1857 (3)	0.15418 (8)	0.0344 (5)
C7	0.7030 (3)	0.2487 (3)	0.20194 (8)	0.0352 (5)
C8	0.7956 (3)	0.1783 (3)	0.24217 (9)	0.0439 (6)
H8	0.7994	0.2147	0.2748	0.053*
C9	0.8828 (4)	0.0508 (3)	0.23184 (10)	0.0497 (7)
H9	0.9475	0.0012	0.2580	0.060*
C10	0.8745 (4)	-0.0036 (3)	0.18286 (10)	0.0488 (7)
H10	0.9324	-0.0906	0.1774	0.059*
C11	0.5921 (3)	0.3827 (3)	0.19545 (8)	0.0375 (5)
C12	0.5947 (3)	0.4675 (3)	0.27888 (9)	0.0414 (6)
C13	0.7029 (3)	0.5695 (3)	0.30414 (9)	0.0444 (6)
H13	0.7547	0.6397	0.2861	0.053*
C14	0.7345 (3)	0.5677 (3)	0.35641 (9)	0.0430 (6)
H14	0.8113	0.6333	0.3732	0.052*
C15	0.6512 (3)	0.4675 (3)	0.38363 (8)	0.0352 (5)

supplementary materials

C16	0.5414 (3)	0.3666 (3)	0.35808 (9)	0.0427 (6)
H16	0.4856	0.2996	0.3761	0.051*
C17	0.5141 (4)	0.3645 (3)	0.30582 (9)	0.0483 (6)
H17	0.4423	0.2947	0.2889	0.058*
C18	0.6715 (3)	0.4716 (3)	0.43996 (9)	0.0379 (5)
C19	0.8661 (4)	0.8014 (3)	0.59673 (10)	0.0527 (7)
C20	0.9307 (4)	0.1948 (4)	0.52030 (14)	0.0719 (9)
H20A	0.8645	0.1203	0.5337	0.108*
H20B	1.0392	0.1566	0.5213	0.108*
H20C	0.8860	0.2169	0.4861	0.108*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.03888 (11)	0.04895 (12)	0.02229 (9)	-0.00736 (8)	0.00388 (7)	0.00269 (7)
S 1	0.1406 (11)	0.0846 (7)	0.0753 (7)	-0.0278 (7)	-0.0325 (7)	-0.0164 (6)
01	0.0524 (12)	0.0758 (13)	0.0274 (8)	-0.0102 (10)	0.0012 (8)	-0.0017 (8)
02	0.0512 (11)	0.0575 (11)	0.0263 (8)	0.0008 (9)	0.0115 (7)	0.0070 (8)
03	0.0420 (10)	0.0662 (13)	0.0472 (10)	-0.0041 (9)	0.0050 (8)	-0.0049 (9)
N1	0.0417 (11)	0.0454 (11)	0.0190 (8)	-0.0020 (9)	0.0041 (8)	-0.0035 (7)
N2	0.0423 (12)	0.0493 (12)	0.0292 (10)	0.0053 (10)	0.0068 (8)	-0.0049 (9)
N3	0.0696 (16)	0.0512 (13)	0.0230 (10)	0.0145 (11)	0.0043 (10)	-0.0049 (9)
N4	0.0773 (18)	0.0629 (16)	0.0371 (12)	-0.0212 (14)	0.0015 (12)	-0.0017 (11)
C1	0.0541 (16)	0.0492 (15)	0.0232 (11)	-0.0006 (12)	0.0002 (10)	-0.0007 (10)
C2	0.0613 (18)	0.0505 (15)	0.0333 (13)	0.0104 (13)	-0.0052 (12)	0.0029 (11)
C3	0.0586 (17)	0.0446 (14)	0.0346 (13)	0.0108 (12)	0.0035 (12)	-0.0030 (10)
C4	0.0477 (14)	0.0412 (13)	0.0225 (10)	-0.0008 (11)	0.0046 (9)	-0.0015 (9)
C5	0.0374 (12)	0.0408 (12)	0.0218 (10)	-0.0036 (10)	0.0057 (9)	-0.0010 (9)
C6	0.0360 (12)	0.0444 (13)	0.0231 (10)	-0.0012 (10)	0.0055 (9)	-0.0019 (9)
C7	0.0388 (13)	0.0449 (13)	0.0222 (10)	-0.0009 (10)	0.0055 (9)	-0.0026 (9)
C8	0.0482 (15)	0.0579 (16)	0.0246 (11)	0.0038 (12)	0.0021 (10)	-0.0023 (10)
C9	0.0499 (16)	0.0644 (18)	0.0325 (13)	0.0128 (14)	-0.0021 (11)	0.0015 (12)
C10	0.0482 (15)	0.0586 (17)	0.0390 (14)	0.0134 (13)	0.0042 (12)	-0.0037 (11)
C11	0.0463 (14)	0.0435 (13)	0.0224 (10)	0.0012 (11)	0.0036 (9)	-0.0019 (9)
C12	0.0541 (15)	0.0477 (14)	0.0226 (10)	0.0152 (12)	0.0064 (10)	-0.0059 (9)
C13	0.0458 (15)	0.0603 (16)	0.0284 (12)	0.0017 (12)	0.0102 (10)	0.0059 (11)
C14	0.0405 (14)	0.0609 (16)	0.0273 (11)	-0.0045 (12)	0.0044 (10)	0.0000 (11)
C15	0.0389 (12)	0.0459 (13)	0.0213 (10)	0.0064 (10)	0.0062 (9)	-0.0006 (9)
C16	0.0571 (16)	0.0412 (13)	0.0311 (12)	-0.0005 (12)	0.0110 (11)	-0.0016 (10)
C17	0.0671 (18)	0.0434 (14)	0.0330 (13)	-0.0008 (13)	0.0020 (12)	-0.0095 (11)
C18	0.0446 (14)	0.0451 (13)	0.0245 (11)	0.0064 (11)	0.0070 (10)	0.0012 (9)
C19	0.0621 (18)	0.0596 (18)	0.0344 (13)	-0.0082 (14)	0.0001 (12)	0.0070 (12)
C20	0.066 (2)	0.068 (2)	0.083 (2)	-0.0048(17)	0.0171 (19)	-0.0144 (18)

Geometric parameters (Å, °)

Cd1—N4	2.219 (3)	С3—Н3	0.9300
Cd1—O3	2.314 (2)	C4—C5	1.385 (3)

Cd1—N1 ⁱ	2.394 (2)	C4—C11	1.494 (3)
Cd1—O1	2.4351 (19)	С5—С6	1.466 (3)
Cd1—O2 ⁱⁱ	2.4466 (19)	C6—C7	1.402 (3)
Cd1—O2	2.5027 (17)	С7—С8	1.382 (3)
Cd1—N2 ⁱ	2.6161 (19)	C7—C11	1.496 (3)
S1—C19	1.626 (3)	С8—С9	1.389 (4)
O1—C18	1.252 (3)	С8—Н8	0.9300
O2—C18	1.266 (3)	C9—C10	1.392 (4)
O2—Cd1 ⁱⁱ	2.4466 (18)	С9—Н9	0.9300
O3—C20	1.412 (4)	С10—Н10	0.9300
O3—H3O	0.8200	C12—C13	1.381 (4)
N1—C5	1.332 (3)	C12—C17	1.393 (4)
N1—C1	1.345 (3)	C13—C14	1.390 (3)
N1—Cd1 ⁱⁱⁱ	2.394 (2)	C13—H13	0.9300
N2—C6	1.319 (3)	C14—C15	1.394 (4)
N2—C10	1.338 (3)	C14—H14	0.9300
N2—Cd1 ⁱⁱⁱ	2.6161 (19)	C15—C16	1.386 (4)
N3—C11	1.272 (3)	C15—C18	1.497 (3)
N3—C12	1.421 (3)	C16—C17	1.388 (3)
N4—C19	1.138 (4)	C16—H16	0.9300
C1—C2	1.384 (4)	С17—Н17	0.9300
C1—H1	0.9300	C20—H20A	0.9600
$C_2 = C_3$	1.392 (4)	C20—H20B	0.9600
C2—H2	0.9300	C20—H20C	0.9600
C3-C4	1.380 (4)		1247(2)
N4—Cd1—O3	106.34 (9)	NI-C5-C6	124.7(2)
N4—Cd1—N1 ⁴	147.31 (8)	C4—C5—C6	109.10 (19)
$O3$ — $Cd1$ — $N1^1$	84.96 (7)	N2—C6—C7	127.2 (2)
N4—Cd1—O1	87.08 (8)	N2—C6—C5	123.57 (19)
03—Cd1—01	79.96 (7)	C7—C6—C5	109.2 (2)
N1 ¹ —Cd1—O1	125.45 (7)	C8—C7—C6	116.8 (2)
N4—Cd1—O2 ⁱⁱ	87.65 (9)	C8—C7—C11	135.5 (2)
O3—Cd1—O2 ⁱⁱ	165.99 (7)	C6—C7—C11	107.66 (19)
N1 ⁱ —Cd1—O2 ⁱⁱ	82.77 (7)	С7—С8—С9	117.3 (2)
O1—Cd1—O2 ⁱⁱ	101.78 (6)	С7—С8—Н8	121.4
N4—Cd1—O2	127.41 (7)	С9—С8—Н8	121.4
O3—Cd1—O2	98.71 (6)	C8—C9—C10	120.8 (2)
N1 ⁱ —Cd1—O2	78.99 (6)	С8—С9—Н9	119.6
O1—Cd1—O2	52.57 (6)	С10—С9—Н9	119.6
O2 ⁱⁱ —Cd1—O2	72.34 (7)	N2—C10—C9	122.8 (2)
N4—Cd1—N2 ⁱ			
	80.35 (8)	N2—C10—H10	118.6
O3—Cd1—N2 ⁱ	80.35 (8) 77.79 (7)	N2—C10—H10 C9—C10—H10	118.6 118.6
$O3 - Cd1 - N2^{i}$ $N1^{i} - Cd1 - N2^{i}$	80.35 (8) 77.79 (7) 72.08 (6)	N2—C10—H10 C9—C10—H10 N3—C11—C4	118.6 118.6 121.3 (2)
$\begin{array}{l} O3 _ Cd1 _ N2^{i} \\ N1^{i} _ Cd1 _ N2^{i} \\ O1 _ Cd1 _ N2^{i} \end{array}$	80.35 (8) 77.79 (7) 72.08 (6) 150.11 (7)	N2—C10—H10 C9—C10—H10 N3—C11—C4 N3—C11—C7	118.6 118.6 121.3 (2) 133.2 (2)

supplementary materials

$O2$ —Cd1— $N2^{i}$	151.04 (7)	C13—C12—C17	120.0 (2)
C18—O1—Cd1	95.20 (15)	C13—C12—N3	120.4 (2)
C18—O2—Cd1 ⁱⁱ	119.27 (16)	C17—C12—N3	119.0 (2)
C18—O2—Cd1	91.66 (14)	C12—C13—C14	120.3 (2)
$Cd1^{ii}$ — $O2$ — $Cd1$	107.66 (7)	C12—C13—H13	119.9
C20—O3—Cd1	121.83 (19)	C14—C13—H13	119.9
С20—О3—НЗО	109.5	C13—C14—C15	120.0 (2)
Cd1—O3—H3O	115.4	C13—C14—H14	120.0
C5—N1—C1	115.0 (2)	C15—C14—H14	120.0
C5—N1—Cd1 ⁱⁱⁱ	112.84 (15)	C16—C15—C14	119.4 (2)
C1—N1—Cd1 ⁱⁱⁱ	131.95 (15)	C16—C15—C18	119.1 (2)
C6—N2—C10	115.0 (2)	C14—C15—C18	121.4 (2)
C6—N2—Cd1 ⁱⁱⁱ	106.82 (15)	C15—C16—C17	120.7 (2)
C10—N2—Cd1 ⁱⁱⁱ	138.01 (17)	C15—C16—H16	119.7
C11—N3—C12	122.2 (2)	C17—C16—H16	119.7
C19—N4—Cd1	157.6 (2)	C16—C17—C12	119.6 (2)
N1—C1—C2	122.9 (2)	C16—C17—H17	120.2
N1—C1—H1	118.5	С12—С17—Н17	120.2
C2—C1—H1	118.5	O1—C18—O2	120.6 (2)
C1—C2—C3	120.9 (2)	O1-C18-C15	120.9 (2)
C1—C2—H2	119.5	O2—C18—C15	118.5 (2)
C3—C2—H2	119.5	N4—C19—S1	179.1 (3)
C4—C3—C2	116.5 (2)	O3—C20—H20A	109.5
С4—С3—Н3	121.7	O3—C20—H20B	109.5
С2—С3—Н3	121.7	H20A—C20—H20B	109.5
C3—C4—C5	118.4 (2)	O3—C20—H20C	109.5
C3—C4—C11	132.9 (2)	H20A—C20—H20C	109.5
C5—C4—C11	108.6 (2)	H20B-C20-H20C	109.5
N1C5C4	126.2 (2)		
N4Cd1C18	-144.23 (18)	Cd1 ⁱⁱⁱ —N2—C6—C5	-1.2 (3)
O3—Cd1—O1—C18	108.61 (17)	N1C5	0.1 (4)
N1 ⁱ —Cd1—O1—C18	32.23 (19)	C4—C5—C6—N2	177.4 (2)
O2 ⁱⁱ —Cd1—O1—C18	-57.24 (17)	N1—C5—C6—C7	-177.3 (2)
O2-Cd1-O1-C18	-0.61 (15)	C4—C5—C6—C7	0.0 (3)
N2 ⁱ —Cd1—O1—C18	150.96 (16)	N2—C6—C7—C8	1.7 (4)
N4-Cd1-O2-C18	48.83 (18)	C5—C6—C7—C8	179.0 (2)
O3—Cd1—O2—C18	-69.56 (15)	N2-C6-C7-C11	-178.1 (2)
N1 ⁱ —Cd1—O2—C18	-152.65 (15)	C5—C6—C7—C11	-0.8 (3)
O1—Cd1—O2—C18	0.60 (14)	C6—C7—C8—C9	-0.7 (4)
O2 ⁱⁱ —Cd1—O2—C18	121.51 (17)	C11—C7—C8—C9	179.1 (3)
N2 ⁱ —Cd1—O2—C18	-150.06 (16)	C7—C8—C9—C10	-0.8 (4)
N4—Cd1—O2—Cd1 ⁱⁱ	-72.68 (12)	C6—N2—C10—C9	-0.6 (4)
O3—Cd1—O2—Cd1 ⁱⁱ	168.93 (7)	Cd1 ⁱⁱⁱ —N2—C10—C9	-176.0 (2)
N1 ⁱ —Cd1—O2—Cd1 ⁱⁱ	85.84 (7)	C8—C9—C10—N2	1.5 (5)
O1—Cd1—O2—Cd1 ⁱⁱ	-120.91 (10)	C12—N3—C11—C4	174.4 (2)

O2 ⁱⁱ —Cd1—O2—Cd1 ⁱⁱ	0.0	C12—N3—C11—C7	-5.6 (5)
N2 ⁱ —Cd1—O2—Cd1 ⁱⁱ	88.43 (14)	C3—C4—C11—N3	-5.9 (5)
N4—Cd1—O3—C20	-156.4 (2)	C5-C4-C11-N3	178.8 (2)
N1 ⁱ —Cd1—O3—C20	54.9 (2)	C3—C4—C11—C7	174.2 (3)
O1—Cd1—O3—C20	-72.4 (2)	C5—C4—C11—C7	-1.2 (3)
O2 ⁱⁱ —Cd1—O3—C20	26.0 (4)	C8—C7—C11—N3	1.5 (5)
O2—Cd1—O3—C20	-23.1 (2)	C6—C7—C11—N3	-178.8 (3)
N2 ⁱ —Cd1—O3—C20	127.7 (2)	C8—C7—C11—C4	-178.5 (3)
O3—Cd1—N4—C19	-63.6 (7)	C6—C7—C11—C4	1.2 (3)
N1 ⁱ —Cd1—N4—C19	43.0 (8)	C11—N3—C12—C13	110.8 (3)
O1—Cd1—N4—C19	-142.3 (7)	C11—N3—C12—C17	-77.4 (4)
O2 ⁱⁱ —Cd1—N4—C19	115.8 (7)	C17—C12—C13—C14	1.5 (4)
O2—Cd1—N4—C19	-178.7 (7)	N3-C12-C13-C14	173.1 (2)
N2 ⁱ —Cd1—N4—C19	10.5 (7)	C12—C13—C14—C15	-3.1 (4)
C5—N1—C1—C2	-1.2 (4)	C13-C14-C15-C16	2.3 (4)
Cd1 ⁱⁱⁱ —N1—C1—C2	173.6 (2)	C13-C14-C15-C18	-174.6 (2)
N1—C1—C2—C3	0.3 (5)	C14—C15—C16—C17	0.0 (4)
C1—C2—C3—C4	1.7 (4)	C18-C15-C16-C17	177.1 (2)
C2—C3—C4—C5	-2.6 (4)	C15-C16-C17-C12	-1.7 (4)
C2—C3—C4—C11	-177.7 (3)	C13—C12—C17—C16	0.9 (4)
C1—N1—C5—C4	0.1 (4)	N3-C12-C17-C16	-170.9 (2)
Cd1 ⁱⁱⁱ —N1—C5—C4	-175.67 (19)	Cd1—O1—C18—O2	1.1 (3)
C1—N1—C5—C6	177.0 (2)	Cd1-01-C18-C15	179.1 (2)
Cd1 ⁱⁱⁱ —N1—C5—C6	1.2 (3)	Cd1 ⁱⁱ —O2—C18—O1	110.3 (2)
C3—C4—C5—N1	1.9 (4)	Cd1—O2—C18—O1	-1.1 (3)
C11—C4—C5—N1	178.0 (2)	Cd1 ⁱⁱ —O2—C18—C15	-67.8 (3)
C3—C4—C5—C6	-175.4 (2)	Cd1—O2—C18—C15	-179.1 (2)
C11—C4—C5—C6	0.8 (3)	C16-C15-C18-O1	166.5 (2)
C10—N2—C6—C7	-1.0 (4)	C14—C15—C18—O1	-16.5 (4)
$Cd1^{iii}$ —N2—C6—C7	175.7 (2)	C16—C15—C18—O2	-15.4 (4)
C10—N2—C6—C5	-178.0 (2)	C14—C15—C18—O2	161.5 (2)
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$; (i	ii) $-x+1$, $-y+1$, $-z+1$; (iii) x	z, -y+1/2, z-1/2.	. /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
O3—H3O···O1 ^{iv}	0.82	1.85	2.658 (3)	169
Symmetry codes: (iv) $-x+2, -y+1, -z+1$.				

Fig. 1

